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Ah&n&-This paper describes an energy-balance integral method for analyzing the contact mehing of 
solids on a hot, moving surface Tem~raf~~de~ndent viscosity, sensible heat and viscous heat 
generation terms are included in the melting model, which is suitable in practice for inclusion in any 
of several proposed formulations for modeling the polymer melting processes in extruders. Two example 
cases are computed and compared with experimental data for the solid bed profile in an extruder. The 
first is one in which both viscous heat generation and temperature-dependent viscosity effects are 
important, while the second example is one in which the large temperature difference across the melt 
film is predominant and the viscous heat generation is relatively unimportant. Good agreement between 

the melting model and the experiments is obtained for both cases. 

NOMENCLATURE 

% coefficient in the temperature profile defined 

by (7); 
A, melt film Stefan number, is,~( TW - Z&W; 

b, temperature coefficient of viscosity &?l]; 

b’, normahzed temperature coefficient of 
viscosity defined by (9); 

B, solid phase Stefan number, i5ps( ‘& - Td)/mi; 

Br, melt film Brinkman number, 
$M p&W-W,- Z4); 

r: 
Df 

specific heat [J/kg”C]; 
generalized Stefan number defined by (14); 

Dt> coefficient in the energy-balance integral 
formulation defined by (%a); 

ii, h, film thickness [m]; normalized film 
thickness; 

L, clearance between the screw flight and 
extruder barrel [m] ; 

Ii, 12,139 integral functions defmed by (9), (10) 
and (13); 

E, thermal conductivity Dy/m “C] ; 
L, length of the solid bed in the R direction [m] ; 

Lo, width of screw channel normal to the screw 
flight [m); 

& rit, mass flow rate in the X direction pCg/s]; 
normalized mass flow rate; 

. fl 
m, melting rate of polymer defined by (20); 

H% latent heat of fusion [J/kg] ; 

Pe, melt film Peclet number, 7~ L/b&; 

Rl, Rz, shielding ratios defined by (18), (19); 
T, T, temperature FC]; normalized temperature; 

ii, u, velocity in the 3 direction [m/s]; normalized 
velocity; 

B, v, velocity in the j direction [m/s]; normalized 
velocity; 

v w, velocity of the heated surface [m/s]; 
2, x, distance along the heated surface [ml; 

normalized distance; 
6 

ji Y, distance normal to the heated surface [m]; 
normalized distance; 

Z, .G distance along the screw channel [m] ; 
normalized distance. 

Greek symbols 

a, thermal diffusivity [m’/s]; 

6, packing fraction of the granular polymer; 

V? normalized distance defined by (7); 

L K melt viscosity [Ns/m’]; normalized 
viscosity; 

P, density pCg/m3]; 

T, r, shear stress in the melt p/m’]; normalized 
shear stress. 

Subscripts 

F, melt film; 

M, interfacial boundary between melt and solid 
phases ; 

0, extruder barrel; 

S, solid phase; 
W, heated wall. 

1. INTRODUCTION 

THERE are many important and practical engineering 
systems in which heat and mass transfer are accom- 
panied by melting or freezing. The large temperature 
gradients which exist in the melting sections of ex- 
truders and on melting grids produce conditions where 
the phase transformation is combined with tem- 
perature-dependent property variations, viscous heat 
generation and sensible heat effects that must be 
appropriately taken into account. A completely satis- 
factory method for the design of single-screw plasti- 
eating extruders depends on the existence of a suitable 
mathematical model for the polymer melting process, 
and optimal design methods are presently not available. 
The need for increased efficiency and energy savings 
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in processing make the continuing study of melting 
models desirable. 

A survey of the state-of-the-art as regards melting 
models for extruders recently was published by Shapiro 
and Pearson [l] in connection with the development 
of a more precise physical description for the phase 
transformation process. Also, Pearson [2] has pre- 

sented a study of the governing equations for the 
melting of beds of granular polymers and has included 

an ordering of terms and the development of similarity 
parameters for the system of equations. The equations 
and similarity variables obtained by Pearson are the 

same as those obtained some time ago by Young [3] 
in a related study. Young’s work on contact melting 
was an outgrowth of the classical studies of Ross [4] 
for grids and of Tadmor and Klein [S] for screw 
extruders. 

A series of elegant modeling experiments by 
Vermeulen [6] and Verrneulen, Scargo and Beek [7] 
yielded a significant body of experimental data for grid 
melting and for the melting section of an extruder. 

Vermeulen also suggested a simple pure-conduction, 
constant-property model for the melting section of an 
extruder. Griffin [S], employing an energy-balance 
integral formulation, included convection, variable 
property and variable melt layer thickness terms in 
the melting model and provided a preliminary, but 
positive, comparison with Vermeulen’s experimental 

results. The same energy-balance integral method had 
previously been applied successfully to the case of 
contact melting on grids [9, lo]. 

The purpose of the present paper is to describe in 
more detail an energy-balance integral model for the 
melting processes in an extruder. Temperature- 
dependent viscosity, sensible heat and viscous heat 

generation terms are included in the melting model 
and a general solution taking account of these effects 

is obtained in a relatively simple and straightforward 
manner. Some comparisons are made between 
measured data and an analytical model for the solid 

bed profile in the melting section of an extruder. 

2. THEORETICAL DEVELOPMENT OF 
THE MELTING MODEL 

The energy-balance integral analysis was developed 
by Goodman [l l] for the analysis of transient, one- 
dimensional heat conduction problems with melting or 
freezing at a system boundary. Motion of the fluid 

must be taken account of in many practical systems 
and Goodman’s original method has been extended to 
these more recently [8-lo]. One typical example of a 
complex heat-transfer system with phase change is the 
melting section of a plasticating extruder. 

The system considered here is shown in Fig. 1 which 
outlines the idealization of an extruder section normal 
to the screw flight. The ordering of the terms in the 
governing equations for such a system has been carried 
out by Pearson [2] and Young [3], and the resulting 
governing equations, in normalized form, are : 

Continuity: !?+Wzo, 
$1 

FIG. 1. Melting on a hot, moving surface as in an idealized 
cross-section ofan extruder. The plane of the figure is normal 
to the screw flight; in the coordinates illustrated the barrel 
is moving and the screw is stationary as assumed in 

practice, c.f. [5]. 

Momentum: e= 2 
BY ay 

Energy : 
aT aT 1 a2T Br au 

zk&+“r-=-~--“-. 
ay Pe ay Pe 3y (3) 

Here viscous heat generation, temperature-dependent 
viscosity and convection terms are included, and the 
motion in the melt film is approximated by purely drag 
flow [2,3,6]. It sometimes is necessary to include shear- 
rate viscosity dependence, but the features of the melt- 

ing model can be amply demonstrated by the 
Newtonian form of equation (2) which is valid for 
crystalline polymers. 

An energy balance at the interface leads to the 

equation 

Peti ks(7&-To) ax 
=--+ 

( ) 
-- 

A dx r;,(‘i;,-T,) ay y=h+ 
(4) 

and after the heat conduction into the solid is evaluated 
by assuming one-dimensional conduction in a moving 

medium, equation (4) reduces to 

(-g),=) = (T)lPe, 5 =$. (4a) 

Here A and B are the Stefan numbers for the melt and 
solid, respectively. These equations are related to the 
physical system in Fig. 1 by the transformation 

The boundary conditions, again in normalized form, 
are 

y=O: u=l, v=O, T=l, 

y=h: uz0, v= -1, T=O. (5) 
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where the melt velocity at y = h is derived from an 
interfacial mass balance 

Ps _ 
i$ = - us (6) 

PF 

when the x components of the interfacial velocities and 
the solid bed velocity are neglected. It should be noted 
here that the interfacial velocities i& and OS in general 
are functions of the distance X along the heated 
surface. Thus the normalized melting rate 5 in the 
governing equations (l), (3) and (4a) is also a function 
of x and is an unknown quantity in the problem at 
the outset. 

It has been shown [8-lo] that a cubic temperature 
profile best simulates the actual temperature distri- 
bution in a variety of polymer melting problems. Let 
the temperature therefore be specified by 

T(x,y)= i Uj$, q=; (7) 
j=O 

where the aj are to be obtained from specified con- 
straints and where h is the local and, as yet, unknown 
melt film thickness. The momentum equation can be 
solved directly. The shear stress is assumed to 
the form 

and when substituted in equation (2) results in 

a ( > -@! = 0, b’= b(T,-‘I’), Zj” ay 

where b’ is a nondimensional parameter which yields 
a measure of the temperature dependence of the melt 
relative to the temperature difference across the film. 
After integrating twice and applying the boundary 
conditions, the solution to this equation is 

u(q)= 1-L 
s 

‘ewTdq, 
s 

1 

11 0 

Ii = eb’Tdr] (9) 
0 

be of 

(8) 

where the temperature profile T is dependent on the 
normalized thickness r~. The mass flux at any x is 

ti(x)=johudy=h~olud~=hZl, x>O (10) 

and 12 becomes, after substituting equation (9), 

Zz = I-~~ol[~~eb’rdrZ]drZ. (11) 

The energy equation (3), when integrated with respect 
to y, reduces to 

since r, from equation (2), is a function only of x. 
When the shear stress r is evaluated from equation (8), 
and the energy equation is combined with the mass 
balance, equation (lo), and the interfacial energy 

balance, equation (4a), the result is 

= [jol ~)qcldx](l+&7.). (124 

Here the fluid bulk, or “cup mixing”, temperature is 
given by 

Ts=$ Z3= s 1 

uTdq. (13) 
0 

The temperature distribution in the melt film is 
obtained by means of the energy-balance integral 
method. When the thermal boundary conditions, 
equation (5), are satisfied the temperature profile, equa- 
tion (7), reduces to 

T = l--q-ar(q-r~~)-a~(~-r~~). (7a) 

Two additional conditions are required in order to 
specify the coefficients a2 and a3. The first condition 
is obtained by taking the appropriate derivatives of 
equation (7a) and substituting in equation (12a), where- 
upon the integrated energy equation reduces to 

(l+az+a3)+Br/Z, = (l-a~-2as)(1+DTs). (14) 

Here, for convenience, the Stefan numbers A and B for 
the melt and solid phases are combined into a single 
“generalized” Stefan number 

A 
D=-. 

l+B 

Following the usual procedures employed in the 
development of the energy-balance integral model 
[8,11], the following conditions are used to specify 
the unknown functions a2 and a3 : 

(9 

(ii) 
(iii) 

These 

The boundary conditions (5) on the melt vel- 
ocities at the interface; 
The energy balance (4) at the interface; 
The energy equation (3) evaluated at the inter- 
face. 
conditions reduce the energy equation at 

where again the Stefan numbers A and B are combined 
into the “generalized” Stefan number D. Substitution 
ofthe assumed temperature profile in equation (15) and 
solution of the resulting quadratic equation yields 

a3 = 0.5([(1-a,)+l.SD] 

-{[(l-a2)+l.5D]Z-[(1-a2)2-D1]}1~2), (16) 

where 

DI=D g+2a2 
[ 1 

, 
1 

and where the negative sign of the quantity under the 
square root symbol is chosen in order to satisfy com- 
patibility requirements at the interface. The two energy- 
balance integral equations (14) and (16) completely 
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specify the unknown temperature profile. The tempera- 
ture in the melt film is a function of the prominent 
non-dimensional parameters that govern the melting 
process, namely the Brinkman number Br, the Stefan 
numbers A and B and the temperature-dependence 
parameter of the viscosity b’. 

The thickness variation of the melt film in the 
x-direction is obtained by integrating equations (4a), 
(7) and (10) after once establishing the temperature 
profile coefficients a2 and a3 in terms of the governing 
parameters just mentioned. The result is 

h2=hZ+2(1-U2-2u3)Ax, o<x<l 
0 

Pe12(l+B) ’ 
\ . (17) 

In this equation the initial condition is taken as the 
clearance ho between the screw flight and the barrel; 
this is a reasonable approximation as demonstrated by 
Vermeulen er al. [7] and Shapiro et al. [12], among 
others. Equation (17) for the melt film thickness is of 
the same form previously reported [8] for melting in 
the absence of viscous heat generation. Pearson [2] 
obtained the same result by means of dimensional 
analysis and a similarity transformation, though he did 
not solve the resulting set of governing equations. 

A useful parameter in contact melting problems such 
as this is the shielding ratio RI or, in this case, the 
ratio of the heat transfer at the interface and the sum 
of the heat transfer at the moving surface plus the heat 
generation in the melt film. For the system considered 
in Fig. 1 

I-L / AT\ 

or, in dimensionless terms, 

1 
RI=-. 

1 +DTe 

The equation (18a) is derived from the overall energy 
balance which is employed together with equation (15) 
to specify the coefficients a2 and a3. A similar function 
by which to assess the influence of viscous heat gener- 
ation in relation to the total heat transferred into and 
generated within the system is 

This ratio reduces to 

BrlI 1 

R2=(1+a2+a3)+Br/1, 
(19a) 

in dimensionless terms. As will be demonstrated, the 
parameters RI and R2 are very useful in estimating the 
relative contributions of the various heat-transfer 
mechanisms to the melting process. 

3. HEAT-TRANSFER RESULTS FROM 
THE MELTING MODEL 

Some representative heat-transfer results, utilizing 
the method just described, are given in Figs. 2-4. In 
all of the computations the properties of low-density 

FIG. 2. The temperature distribution in the melt film as a 
function of the Brinkman number Br, for fixed values of the 
Stefan numbers A and B for the melt and solid phases. 

1.0 r 

0.0 v I f t I 
0.0 2.0 4.0 6.0 6.0 10.0 

& x IOU 

FIG. 3. Thenormalized melt rate, equation (20),asa function 
of the ratio A/Pe of the Stefan and Peclet numbers for the 
melt, for fixed values of the Brinkman number Br and the 

Stefan number B for the solid. 

polyethylene (LDPE) were assumed, since that par- 
ticular polymer is characterized by a well-defined 
melting point and highly temperature-dependent 
viscosity, i.e. pM = 4770Ns/m2, b = O.O35”C-i and 
Ti, = 105°C [6]. 

The temperature profile, equation (7a), is plotted in 
Fig. 2 for three values of Brinkman number and for 
typical values of the Stefan numbers A and B. The 
condition A = 1 corresponds to a temperature differ- 
ence ;iiw-- 7~ = 43°C across the melt film, and B = 2 
for the solid is likewise representative of the extrusion 
experiments reported by Vermeulen et al. [7]. The 
influence of viscous dissipation in the melt film is easily 
perceived from the results plotted in Fig. 2 and listed 
in Table 1. At the lowest value of Brinkman number, 
Br = 0.5, little effect of viscous heat generation appears 
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FIG. 4. The ratio RZ of the viscous heat generation and the 
sum of viscous heat generation and conduction at the hot, 
moving surface as a function of the melt Stefan number A, 
for fixed values of the Brinkman number Br and the Stefan 

number B for the solid. 

in the nearly linear temperature profile. In this case, 
about 75% of the energy added to the melt is conducted 
across the moving heated surface and 25% is generated 
by viscous forces. Of this total, about 8004 is conducted 
across the melt interface and 20% is convected away 
by the melt film, as found from the shielding ratios 
Rr and RZ. As the Brinkman number is increased to 
Br = 2 and still further to 5, the viscous heat generation 
portions of the energy input to the melt increase to 
55% and to 95x, respectively. This increasing influence 
of the frictional heating also is evident from the in- 
creasingly convex form of the temperature profiles in 
Fig. 2 and from the increasing magnitude of the 
quadratic coefficient a2 in the temperature profile (see 
Table 1). 

Table 1. The effect of viscous dissipation 
on the temperature profile, 

T= l-~-az(~-~~)-a3(q-qJf 
(Stefan numbers A = 1.0, B = 2.0) 

Brinkman 
number, 

Br a2 a3 

0.5 -0.10 f0.067 
2.0 -0.59 +0.21 
5.0 - 1.44 + 0.49 

The melting rate of polymer along the heated wall 
is conveniently expressed by the equation 

I 2(1--a2-2a&4 L 

( >I 

l/Z 
=I2 1+ 

haZz(l+B)Pe l;o 
-0.5 (20) 

where the length Lo normal to the screw flight is the 
characteristic length used to scale ho and Pe. The melt 
rate ti” is equal to the total melt flux at X = L less 
the melt carried across the screw flight at x = 0. 
Equation (20) again accounts for viscous heat gener- 

ation, convection and v~iable-pro~~y effects on the 
melting rate. This equation is plotted in Fig. 3 for a 
range of Stefan numbers equal to A = 0.25-2 for the 
melt and B = 1 and 2 for the solid. Results for two 
Brinkman numbers (BP = 0.5 and 2) for the melt are 
shown and it should be noted that at constant 
Brinkman number the velocity of the heated wall 
VW z ( Tw- TM)1/2. The range of nondimensional par- 
ameters and the length L/L, of the solid bed in Fig. 3 
are typical of extruder operating conditions as shown, 
for example, in Figs. 5 and 6. 

““Ii 

0.2 0.4 0.6 0.8 1.0 1.2 

Z(m) 

FIG. 5. Thewidthofthesolid bed L,K+inthe melting section 
of an extruder as a function of the displacement I along the 
screw flight. Br = 4.3, A = 1.0, B = 2.2. Experimental data 
and properties for low-density polyethylene from [6]. 
Constant-property, pure conduction solution, [7] --; 

equation (22) ----. 

1 
O,jo 02 04 06 08 1.0 1.2 

Z(m) 

FIG. 6. Thewidth of thesolid bed L/Lo in the melting section 
of an extruder as a function of the displacement P along the 
screw Sight. Br = 0.5, A = 1.5, B = 2.2. Experimental data 
and properties for low-density ~lyethylene from [6]. 
Constant-property, pure conduction solution, [7] --; 

equation (22) ----. 

The men rate dependence on the temperature differ- 
ence across the melt film is clearly shown in the 
figure, with larger thermal gradients across the melt 
film resulting in a correspondingly increasing melt rate 
for A -=z 1.5. For Stefan numbers greater than this value 
the variable viscosity effects in the film predominate 
and the melt rate rit” reaches a maximum and decreases 

HMT Voi 20. No. 6--G 
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as the temperature difference across the film is increased the heat generation is important over the lowest 
still further. The actual melt rate i is proportional to segment ofthemelt Stefan number regime; for example, 
i& and increases very slowly or even decreases when at A = 0.5, the heat generation is 37’!,,, of the heat 
A > 1.5. The Stefan number B for the solid also in- conducted into the melt at ~7 = 0 while at A = 1.5 
fluences themeltingrate; when the subcooling ( TM - %I) and 2 respectively the heat generation in the melt is 
of the solid increases, the melting rate rig” adjusts down- only 12”,;, and So/;, of the conduction term at the 
ward as shown in the figure owing to the increased moving surface. 
conduction through the solid phase. When the Brinkman number is increased to a large 

The importance of the temperature dependence of value such as Br = 5, the viscous heat generation 
the viscosity to the melt flow behavior can be seen becomes an important and often the predominat con- 
from the integrals 1, and IX listed in Table 2. As seen sideration. At large Stefan numbers such as A = 2, the 

Table 2. Temperature-dependence effects on flow in the melt film 

Stefan number Brinkman number 
A B Br 

__~~~~~ _~ 
0.25 1 .o* 0.5 
0.5 
1.0 
2.0 

0.25 1.0 5.0 
0.5 
1.0 
2.0 

(Constant-property 
solution, h = 0) 

11 (Equation 9) 1~ (Equation 11) 

1.23 0.467 
1.51 0.438 
2.30 0.378 
5.81 0.272 

1.28 0.468 
1.60 0.438 
2.49 0.380 
6.31 0.278 

1.0 0.5 

*Changes in B only slightly influence II and have no influence on Il. 

from a comparison with the constant-property refer- 
ence values, the temperature difference across the melt 
film has an important effect of the momentum equa- 
tion (2). The integral I,, which is a direct measure of 
the viscosity-temperature dependence and which is 
equal to unity in the constant-property case, increases 
by a factor of approximately six as the Stefan number 
of the melt increases from 0.25 to 2. The integral IZ, 

which is equal to one-half in the constant-property 
case, decreases from 0.47 to 0.28 over the Stefan number 
range just mentioned. It is also important to note that 

the integral IZ is virtually independent of both the 
Brinkman number and the subcooling of the solid bed 
(denoted by the Stefan number B) and that I, is 
independent of B and only weakly dependent on the 
Brinkman number over an order of magnitude change 
in the latter. The influence of heat generation on the 
melting rate is primarily due to the coefficients a2 and 

a3 (which are both dependent on I,) in the temperature 
gradient at the interface and to the relation 

VW = [Brk,(T,- TM)/jiM]l!’ 

between the velocity (Peclet number) and the tempera- 
ture difference across the melt film at constant 
Brinkman number. 

The parameter R2 of equation (19a), which is the 
ratio of the viscous heat generation term and the sum 
of heat generation and conduction at the heated wall, 
is plotted in Fig. 4. From these results it is possible 
to assess the importance of viscous heating of the 
melt over typical ranges of the Stefan and Brinkman 
numbers for both phases. At small Brinkman numbers 

heat generation term is 1.2 times the heat conducted 
into the melt at the moving heated wall. The effect of 

the heat generation becomes progressively greater 
until, at A = 0.95, the heat conduction at the heated 
wall falls to zero. Further evidence of this can be 
seen in Fig. 2 where the temperature gradient at y = 0 
and for Br = 5 appears to be nearly zero. When the 

Stefan number is decreased still further at Br = 5, the 
direction of the heat conduction at the wall is changed. 
For A = 0.75, the viscous heat generation is predomi- 
nant and is eleven times the heat conducted awuy 
from the melt at the moving surface. As with the 
integral functions II and I2 listed in Table 2, the 
results in Fig. 4 show that the ratio Rz is strongly 
dependent on changes in the Brinkman number and 
the Stefan number (temperature difference) for the melt 
film, but is insensitive to changes in the subcooling of 
the solid phase for typical values of the Stefan number 
B. The results just described agree with the assertion 
by Lindt [13] that viscous heat generation may often 
be the predominant factor in the melting of polymers 
during extrusion. 

4. APPLICATION OF THE MELTING MODEL 

The energy-balance integral is applicable in practice 
for determining a variety of system parameters, in- 
cluding the solid bed profile in the melting section of 
an extruder. As an example, the computation of the 
solid bed profile in an extruder of constant channel 
cross-section is now considered. This simple geometry 
is sufficient to demonstrate the applicability of the 
melting model and its extension to more complicated 
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systems, which indude a variable chattel cross-section 
or a heated screw, is s~~ghtforw~d. These systems 
have been studied to varying degrees of complexity by 
Shapiro and Pearson [l], Lindt [13] and Donovan 
[14], among others. 

The present model is derived from that of Vermeulen, 
Scargo and Beek [7]. In the latter case no account 
was taken of viscous heat generation, temperature- 
dependent viscosity and convection, and all are in- 
cluded here. It is assumed that changes in the z direc- 
tion take place slowly and that the melting model 
described in the previous sections is valid locally at 
varying d~spla~ments afong the screw channel. This is 
a common assump~on in all extruder modeling studies. 
In addition, assuming a constant mass throughput rate 
&iip in the direction z along the screw channel, the 
differential equation for the solid bed length L is 

(21) 

I-Iere e is the density ratio for the granular polymer 
relative to bulk solid.+ For the experiments described 
by Vermeulen er aL, E = 0.65. In this equation the 

Two examples utilizing equation (22) are now con- 
sidered. The experimental data were obtained by 
Vermeulen et al. [7] in an experimental study of the 
melting of low-density polyethylene, and the relevant 
extruder parameters and physical properties are tabu- 
lated in [6,7]. In the first example shown in Fig. 5 the 
rotational speed and barrel temperature combine to 
result in a large Brinkman number and moderate 
Stefan number for the melt, cf. Table 3(a). The screw 
was cooled during the experiments reported by 
Vermeulen et al. and this precluded any melting at the 
base of the screw. Thus the large Stefan number, 
B = 2.2, is a result of this cooling, i.e. large (TM- To)* 
As a result of the large Brinkman number, Br = 4.3, 
about 87::6 of the energy addition to the melt is 
estimated to be a result of viscous heat generation 
and 13”/d to be from conduction at the barrel surface. 
Of this total energy added to the melt, about SOY; is 
conducted across the melt interface and 20% is con- 
vected away by the melt flow. The integrals fr and 1s 
corresponding to the conditions of Fig. 5 also suggest 
a significant departure from the constant-property 
case, as can also be seen from a comparison of the 
coefficients X and Y for the two cases in Tabfe 3(a). 
The modified solid bed profile, equation (221, yields 
somewhat better agreement with the experimental data 
in Fig. 5 than does the constant-pro~~y, pure-eon- 

Table 3. A comparison of the coefficients X and Yin the solid bed profile, equation (22) 

b-4 Br = 4.3 

X 
Yx to2 

A= 1.0 B = 2.2 I, = 2.8 12 = 0.38 (Fig. 5) 
Constant properties, 

pure conduction in film [7] Equation (22) 
-__l_l...-. 

1.19 2.97 
4.26 8.51 

@I Br = 0.5 A = 1.5 B = 2.2 I, = 3.7 12 = 0.32 Fig. 6) 

x 4.38 7.80 
Y x IO2 8.31 9.55 

- 
Peclet number Pe = VW LO/iipr z = Z/LO and ho = ho/L. 
When ‘equation (21) is integrated with the initial con- 
dition L = Lo at f = 0, the solution is 

(x+1)“2- x$-i, 
i > 

l/Z 

+&in 
2 

where 

x = 2fl -‘a - 2a && 

Pelz k& I + 8) 
, 

Yz (22a) 

(22b) 

(22c) 

*The melting rate & of the solid polymer in equation (4) 
is multiplied by the factor E in the case of the granular 
polymer. The film thickness h is then altered as shown in 
equation (21). 

duction profile, The tendency of the constant-property 
solution to overestimate the melting rate at large values 
of (Tw - TM), and to correspondingly underestimate the 
solid bed profile, is offset in this case by the viscous 
heat generation term which is inctuded in the present 
analysis but excluded from the constant-property, 
pure-conduction model. 

The second example plotted in Fig. 6 and listed in 
Table 3(b) differs from the previous one in that the 
Brinkman number, Br = 0.5, is relatively small. Con- 
sequently the viscous heat generation ~ntribution 
makes up only 15% of the energy added to the melt 
whiie 85% of the totai energy input is conducted 
across the hot barrel surface. The temperature- 
dependence of the viscosity is more pronounced at 
this higher Stefan number A = 1.5, and the integral 
functions Jr and IZ again deviate subst~tially from 
the corresponding constant-pro~rty values owing to 
the relatively large temperature difference (!I’& - TM = 
65°C) across the melt film. The’importance of taking 
the temperaturedependence of the viscosity into 
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account is illustrated once again by the much improved 
agreement between equation (22) and the experimental 
data in Fig. 6 as compared to the constant-property 
solution. The viscosity of the melt increases from 500 
to 4700Ns/m’ across the melt film under the condi- 

tions plotted in Fig. 6, and the melt rate is considerably 
overestimated when the temperature-dependence of 
the melt viscosity is neglected. 

5. SUMMARY AND CONCLUDING REMARKS 

An energy-balance integral method for analyzing the 
contact melting of solids at a hot moving surface has 
been described. The method is suitable in practice for 
inclusion in any of several formulations for modeling 
the polymer melting processes in a screw extruder. 
Temperature-dependent viscosity, sensible heat and 
viscous heat generation terms are of general importance 
to this problem and can be included in the integral 
formulation in a relatively simple and straightforward 

manner. Several integral functions have been deter- 
mined which allow one to estimate the relative con- 
tributions of the several heat-transfer mechanisms to 

the melting processes. The melting process is strongly 
dependent on the Brinkman number which character- 
izes the viscous heat generation and on the Stefan 
number for the melt which characterizes the ratio of 
sensible and latent heats for the film. At the large 
Stefan numbers which are typical of extrusion pro- 
cesses, the temperature-dependence of the viscosity has 
a limiting effect on the maximum melting rate which 
can be achieved. The large Brinkman numbers which 
are typical of polymer extrusion suggest that viscous 

heat generation often has a predominant effect on the 
melting process. 

The integral melting model has been incorporated 

in a typical but relatively simple model for predicting 
the solid bed profile in an extruder of constant cross- 
section. This simple geometry is sufficient to demon- 
strate the applicability and the salient features of the 
integral model. Good agreement with experiment has 
been obtained in two example cases. The first con- 
cerns a system in which both viscous heat generation 
and temperature-dependent viscosity are important, 

and the second is one in which the large temperature 
difference across the melt film is the predominating 
factor and the viscous heat generation contribution is 
relatively small. 
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MODELE INTEGRAL DE BILAN ENERGETIQUE APPLICABLE A LA FUSION 
DE SOLIDES SUR UNE SURFACE CHAUDE EN MOUVEMENT. AVEC APPLICATION 

AUX PROCESSUS DE TRANSPORT LORS DE L’EXTRUSION 

R&um&L’article dCcrit une mbthode intkgrale de bilan Cnergttique pour l’ttude de la fusion de solides 
au contact d’une surface chaude en mouvement. On a introduit, dans le modile de fusion une viscositb 
d&pendant de la temperature des termes sources de production de chaleur et la dissipation visqueuse, 
ce qui est en pratique appropriC g l’introduction dans une des formulations proposCes pour la 
kodtlisation des processus de fusion des polymtres par extrusion. A titre d’exemple, deux cas sont 
calcults et cornpar& aux don&es expkrimentales relatives aux profils de lit solide dans un dispositif 
d’extrusion. Dans le premier exemple la production de chaleur par dissipation visqueuse et les effets de 
variation de la viscositi! avec la temptrature sont tous deux importants, tandis que dans le deuxieme 
exemple de grands &carts de temperature g travers le iihn en fusion sent determinants et la production 
par dissipation visqueuse est relativement peu importante. On obtient dans les deux cas un bon accord 

entre le modble de fusion et les exp&riences. 
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EIN ENERGIE-BILANZ-INTEGRAL-MODELL FUR DAS SCHMELZEN 
VON FESTKGRPERN AUF EINER HEISSEN, BEWEGTEN OBERFLACHE UND 

DIE ANWENDUNG AUF TRANSPORTVORG~NGE IN EXTRUDERN 

Zussmmenfassuag-Die Arbeit beschreibt eine Energiebilanz-Integral-Technik zur Beschreibung des 
Kontaktschmelzens von Festkiirpern auf einer heiBen, bewegten Oberfliiche. Das Schmelzmodell beriick- 
sichtigt die Temperaturabh~ngi~e~t der Viskositat und der spezifischen W~rmekapazit~t sowie die 
Warmeerzeugung infolge Reibung; das Model1 eignet sich in der Praxis zum Einsetzen in jede der 
vorgeschlagenen Formulierungen zur Beschreibung des Polymer-Schmelzvorganges in Extrudern. Es 
werden 2 Beispiele durchgerechnet und mit experimentellen Daten fur die Festkdrperprofile in Extrudern 
verglichen. Im ersten Fall spielen sowohl die W~rmeerzeugung infolge Reibung wie die Temperatur- 
abhIngigkeit der Viskositat eine Rolle, wahrend im zweiten Fall grot3e Temperaturdilferenzen im 
Schmelzgebiet dominieren und die WBrmeerzeugung infolge Reibung relativ unbedeutend ist. In beiden 
Fgllen ergibt sich eine gute ~bereinstimmung zwischen dem Schmelzmodell und den Ve~uchsergebnissen. 
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~~TErPAnbHA~ MO~E~b 6ARAHCA 3HEpr~~ 
JIJI$I OIIMCAHMII I’IPOIJECCA KJIABJIEHMIf TBEPAbIX 

TEJI HA I-OPRYEI? ~BM?KYIQEI%Zlf I-IOBEPXHOCTIJ 
B nP~MEHEH~~ K nPO~ECCAM IIEPEHOCA HPH 

3K~TPY3~~ 

hmoTauHn- ~KTerpaJIbHbIfi MeTO] 6aJIaHCa 3HepreH liCtIOJYb3yeTcn AJIll HCCJIe~OBaHUII KOHTBKT- 
~oro nnaBnetw Tsepnblx Ten Ha ropsreli Aekiwcyrueiks nosepxaocra. IlpeAnoxceHHan MoAenb 
nAaBneHU~ yWTb1Bae-r 3aBIiCIIMOCTb BII3KOCTH OT TeM~epaTypbI, Te~~ocoAep~aH~e w Tennary 
BR3KOZi AKCC~na~~~;~ yAO6HO UCilOnb30BaTb Ha IIpaKTtiKe B nK6Oit H3 ~PeA~O~eHHbIX B paGOT@ 
@0pMy+~~4p0~0K Ann MoAenrrpoBawwi npoqec~o~MaB~eHl~arrona~ep~~ B 3KcTpyAepax. B KaYecrne 
~~wMepapaCCr~TaHb~ABaCnyraflUAaHOcpaB~eHUec3KCnepnMeHT~bHbiM~ na~~bIM~~~~~pO~~~ff 
TBepJIOrO cno5i B 3KcTpyAepe. 3 nepBoM cnyrae Ao~KH~~~~~~M~ R~nflz~Tcs TennoTa ~~3Koti 
ABCCli~~UUIlU3~BIIC~MOCTbBII3KOCTN0TTeM~e~aTypbI,BTOB~~MRKaKBOBTO~OM-3H~YUTe~bH~R 
pa3HOCTb TeMIIepaTyp IIOIIepeK paCIIl-IaBa IlpH HeCyllJeCTBeHHOM BIIIISIHHH Bn3KOfi ARCCALGNWiH. B 
06otix CJlyYaRX I'IOAy'feHO XOpOIIIee COOTBeTCTBIie TeOpeTH'IeCKHX pe3yJlbTaTOB C AaHHbIMIl 3KC- 

nep%fMeHTOB. 


