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Abstract—This paper describes an energy-balance integral method for analyzing the contact melting of
solids on a hot, moving surface. Temperature-dependent viscosity, sensible heat and viscous heat
generation terms are included in the melting model, which is suitable in practice for inclusion in any
of several proposed formulations for modeling the polymer melting processes in extruders. Two example
cases are computed and compared with experimental data for the solid bed profile in an extruder. The
first is one in which both viscous heat generation and temperature-dependent viscosity effects are
important, while the second example is one in which the large temperature difference across the melt
film is predominant and the viscous heat generation is relatively unimportant. Good agreement between
the melting model and the experiments is obtained for both cases.

NOMENCLATURE
a;, coefficient in the temperature profile defined
by (7);
A, melt film Stefan number, Cop(Tyy — T/ M;
b, temperature coefficient of viscosity [°C™'];
Y, normalized temperature coefficient of
viscosity defined by (9);
B,  solid phase Stefan number, Cos(Tyy— To)/M;
Br,  melt film Brinkman number,
iine Vi [ke(Tw — Tn);
Cp.  specific heat [J/kg°C];
D, generalized Stefan number defined by (14);
Dy, coefficient in the energy-balance integral
formulation defined by (16a);
B b, film thickness [m]; normalized film
thickness;
ko,  clearance between the screw flight and

extruder barrel [m];
11,1z, 15, integral functions defined by (9), (10)
and (13);

k, thermal conductivity [W/m °C];
L, length of the solid bed in the % direction [m];
Lo,  width of screw channel normal to the screw

flight [m];
m,m, mass flow rate in the ¥ direction [kg/s];
normalized mass flow rate;

s

r”,  melting rate of polymer defined by (20);

M, latent heat of fusion [J/kg];

Pe,  melt film Peclet number, Vi L/dr;

Ry, R,, shielding ratios defined by (18), (19);

T.T, temperature [°C]; normalized temperature;

i, u, velocity in the x direction [m/s]; normalized
velocity; ’

#,0, velocity in the y direction [m/s]; normalized
velocity;

Vw, velocity of the heated surface [m/s];

% x, distance along the heated surface {m};

normalized distance;
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%y, distance normal to the heated surface [m];
normalized distance; :

Zz, distance along the screw channel [m];
normalized distance.

Greek symbols

& thermal diffusivity [m?/s];

& packing fraction of the granular polymer;

7, normalized distance defined by (7);

By, melt viscosity [Ns/m?]; normalized
viscosity;

B, density [kg/m3];

7,7, shear stress in the melt [N/m?]; normalized
shear stress.

Subscripts

F, melt film;

M,  interfacial boundary between melt and solid
phases;

A extruder barrel;
S, solid phase;
W, heated wall.

1, INTRODUCTION

THERE are many important and practical engineering
systems in which heat and mass transfer are accom-
panied by melting or freezing. The large temperature
gradients which exist in the melting sections of ex-
truders and on melting grids produce conditions where
the phase transformation is combined with tem-
perature-dependent property variations, viscous heat
generation and sensible heat effects that must be
appropriately taken into account. A completely satis-
factory method for the design of single-screw plasti-
cating extruders depends on the existence of a suitable
mathematical model for the polymer melting process,
and optimal design methods are presently not available.
The need for increased efficiency and energy savings
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in processing make the continuing study of melting
models desirable.

A survey of the state-of-the-art as regards melting
models for extruders recently was published by Shapiro
and Pearson [1] in connection with the development
of a more precise physical description for the phase
transformation process. Also, Pearson [2] has pre-
sented a study of the governing equations for the
melting of beds of granular polymers and has included
an ordering of terms and the development of similarity
parameters for the system of equations. The equations
and similarity variables obtained by Pearson are the
same as those obtained some time ago by Young [3]
in a related study. Young’s work on contact melting
was an outgrowth of the classical studies of Ross [4]
for grids and of Tadmor and Klein [5] for screw
extruders.

A series of elegant modeling experiments by
Vermeulen [6] and Vermeulen, Scargo and Beek [7]
yielded a significant body of experimental data for grid
melting and for the melting section of an extruder.
Vermeulen aiso suggested a simple pure-conduction,
constant-property model for the melting section of an
extruder. Griffin [8], employing an energy-balance
integral formulation, included convection, variable
property and variable melt layer thickness terms in
the melting model and provided a preliminary, but
positive, comparison with Vermeulen’s experimental
results. The same energy-balance integral method had
previously been applied successfully to the case of
contact melting on grids [9, 10].

The purpose of the present paper is to describe in
more detail an energy-balance integral model for the
melting processes in an extruder. Temperature-
dependent viscosity, sensible heat and viscous heat
generation terms are included in the melting model
and a general solution taking account of these effects
is obtained in a relatively simple and straightforward
manner. Some comparisons are made between
measured data and an analytical model for the solid
bed profile in the melting section of an extruder.

2. THEORETICAL DEVELOPMENT OF
THE MELTING MODEL

The energy-balance integral analysis was developed
by Goodman [11] for the analysis of transient, one-
dimensional heat conduction problems with melting or
freezing at a system boundary. Motion of the fluid
must be taken account of in many practical systems
and Goodman’s original method has been extended to
these more recently [8-10]. One typical example of a
complex heat-transfer system with phase change is the
melting section of a plasticating extruder.

The system considered here is shown in Fig. 1 which
outlines the idealization of an extruder section normal
to the screw flight. The ordering of the terms in the
governing equations for such a system has been carried
out by Pearson [2] and Young [3], and the resulting
governing equations, in normalized form, are:
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F1G. 1. Melting on a hot, moving surface as in an idealized

cross-section of an extruder. The plane of the figure is normal

to the screw flight; in the coordinates illustrated the barrel

is moving and the screw is stationary as assumed in
practice, cf. [5].
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Here viscous heat generation, temperature-dependent
viscosity and convection terms are included, and the
motion in the melt film is approximated by purely drag
flow [2, 3, 6]. It sometimes is necessary to include shear-
rate viscosity dependence, but the features of the melt-
ing model can be amply demonstrated by the
Newtonian form of equation (2) which is valid for
crystalline polymers.

An energy balance at the interface leads to the
equation

( 6T> _Edrh_‘_ k(T —To) ( 67})
ay y=h- A dx EF(TW—TM) 6y y=h+
and after the heat conduction into the solid is evaluated

by assuming one-dimensional conduction in a moving
medium, equation (4) reduces to

oT 1+B dm
(-5 ) (F)ere =

Here A and B are the Stefan numbers for the melt and
solid, respectively. These equations are related to the
physical system in Fig. 1 by the transformation

S

(4a)

=— =
& ke(Tw — Tn)
_CnulTy-T) ,_ CelTu=To
M ’ M '

A

The boundary conditions, again in normalized form,
are

u=1v=0 T=1,
ux0,v=-1, T=0.

= 0:
yy= h: ©)
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where the melt velocity at y = h is derived from an
interfacial mass balance

vp = Ps Us (6)
PF

when the x components of the interfacial velocities and
the solid bed velocity are neglected. It should be noted
here that the interfacial velocities #r and s in general
are functions of the distance X along the heated
surface. Thus the normalized melting rate £ in the
governing equations (1), (3) and (4a) is also a function
of x and is an unknown quantity in the problem at
the outset.

It has been shown [8-10] that a cubic temperature
profile best simulates the actual temperature distri-
bution in a variety of polymer melting problems. Let
the temperature therefore be specified by

: y
T(y)= % o, n=3 (7
j=0

where the a; are to be obtained from specified con-
straints and where h is the local and, as yet, unknown
melt film thickness. The momentum equation can be
solved directly. The shear stress is assumed to be of
the form

7L
=

ou
Py Vw

dy

- —u(T)%= —emm g

and when substituted in equation (2) results in

g (e‘” @) =0, b =b(Ty—Ty)
dy ay

where b’ is a nondimensional parameter which yields
a.measure of the temperature dependence of the melt
relative to the temperature difference across the film.
After integrating twice and applying the boundary
conditions, the solution to this equation is

L, r
u(n)=l—}—j e’ Tdn, 11=J e’Tdn (9

1J0 V]

where the temperature profile T is dependent on the
normalized thickness #. The mass flux at any x is

]

h 1
m(x) = J udy = hJ udyp=hl,, x>0 (10)
0
and I, becomes, after substituting equation (9),

1 (e,
12=1——J [J eden]dn.
Il 0 0

The energy equation (3), when integrated with respect
to y, reduces to

10T +Br 1¢T + d Td
Pe 0y Jy=o Pe Pe 0y Jy=p dx Jo Y

(12)

(11)

since 1, from equation (2), is a function only of x.
When the shear stress 7 is evaluated from equation (8),
and the energy equation is combined with the mass
balance, equation (10), and the interfacial energy
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balance, equation (4a), the result is

() s
° a" n=0 11
17T 4
= [J; (a>"=ldxi|(l+m 7};). (12a)

Here the fluid bulk, or “cup mixing”, temperature is
given by

I !
Tg=—, Is3= uTdn. (13)

I 2 0
The temperature distribution in the melt film is
obtained by means of the energy-balance integral
method. When the thermal boundary conditions,
equation (5), are satisfied the temperature profile, equa-
tion (7), reduces to

(7a)

Two additional conditions are required in order to
specify the coefficients a, and a;. The first condition
is obtained by taking the appropriate derivatives of
equation (7a) and substituting in equation (12a), where-
upon the integrated energy equation reduces to

(1+ax+as)+Br/l; = (1—a;—2a3)(1+ DTy).

Here, for convenience, the Stefan numbers A and B for
the melt and solid phases are combined into a single
“generalized” Stefan number

_ A

T 1+B

T=1-n—a(n—n*)—astn—n’).

(14)

Following the usual procedures employed in the
development of the energy-balance integral model
[8,11], the following conditions are used to specify
the unknown functions a, and a;:
(i) The boundary conditions (5) on the melt vel-
ocities at the interface;
(ii) The energy balance (4) at the interface;
(iii) The energy equation (3) evaluated at the inter-
face.
These conditions reduce the energy equation at
y=h{n=1)to

D( aT>2 _(82T) LB
on n=1— 5'12 n=1 I,

where again the Stefan numbers A and B are combined
into the “generalized” Stefan number D. Substitution
of the assumed temperature profile in equation (15) and
solution of the resulting quadratic equation yields
as = 0.5([(1—a,)+1.5D]

- {[(1 —az) + ].SD]Z - [(1 —02)2 —Dl]} ”2), (16)

where

(15)

B
Dy = D[I—Zr+2a2], (162)
1
and where the negative sign of the quantity under the
square root symbol is chosen in order to satisfy com-
patibility requirements at the interface. The two energy-
balance integral equations (14) and (16) completely
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specify the unknown temperature profile. The tempera-
ture in the melt film is a function of the prominent
non-dimensional parameters that govern the melting
process, namely the Brinkman number Br, the Stefan
numbers A and B and the temperature-dependence
parameter of the viscosity b'.

The thickness variation of the melt film in the
x-direction is obtained by integrating equations (4a),
(7) and (10) after once establishing the temperature
profile coefficients a, and a; in terms of the governing
parameters just mentioned. The result is

2(1 —a; —2a3) Ax
Pel,(1+B)

h2= 2

3 , 0<x<1. (1)

In this equation the initial condition is taken as the
clearance ho between the screw flight and the barrel;
this is a reasonable approximation as demonstrated by
Vermeulen et al. [7] and Shapiro et al. [12], among
others. Equation (17) for the melt film thickness is of
the same form previously reported [8] for melting in
the absence of viscous heat generation. Pearson [2]
obtained the same result by means of dimensional
analysis and a similarity transformation, though he did
not solve the resulting set of governing equations.

A useful parameter in contact melting problems such
as this is the shielding ratio R; or, in this case, the
ratio of the heat transfer at the interface and the sum
of the heat transfer at the moving surface plus the heat
generation in the melt film. For the system considered
in Fig. 1

R1= A 6 B ’L h_@t't B _, (18)
—ky— dx— i—dydx
o] 5,\7 7=0 0 Jo 3y
or, in dimensionless terms,
R, = L 18a)
T 14DTy (182

The equation (18a) is derived from the overall energy
balance which is employed together with equation (15)
to specify the coefficients a, and a;. A similar function
by which to assess the influence of viscous heat gener-
ation in relation to the total heat transferred into and
generated within the system is

L fh
—j J r@dyd‘c
0

R, =— . (19)
j( kp*) dx — er—dydx
0 i=
This ratio reduces to
, = Br/Il (193)
(14+a+as)+ Br/l,

in dimensionless terms. As will be demonstrated, the
parameters R; and R; are very useful in estimating the
relative contributions of the various heat-transfer
mechanisms to the melting process.

3. HEAT-TRANSFER RESULTS FROM
THE MELTING MODEL

Some representative heat-transfer results, utilizing
the method just described, are given in Figs. 2-4. In
all of the computations the properties of low-density
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F1G. 2. The temperature distribution in the melt film as a
function of the Brinkman number Br, for fixed values of the
Stefan numbers A and B for the melt and solid phases.

1o

F1G. 3. Thenormalized melt rate, equation (20),as a function

of the ratio A/Pe of the Stefan and Peclet numbers for the

melt, for fixed values of the Brinkman number Br and the
Stefan number B for the solid.

polyethylene (LDPE) were assumed, since that par-
ticular polymer is characterized by a well-defined
melting point and highly temperature-dependent
viscosity, ie. py = 4770Ns/m?2, b =0.035°C~! and
T = 105°C [6].

The temperature profile, equation (7a), is plotted in
Fig. 2 for three values of Brinkman number and for
typical values of the Stefan numbers 4 and B. The
condition 4 =1 corresponds to a temperature differ-
ence Ty — Ty = 43°C across the melt film, and B=2
for the solid is likewise representative of the extrusion
experiments reported by Vermeulen et al. [7]. The
influence of viscous dissipation in the melt film is easily
perceived from the results plotted in Fig. 2 and listed
in Table 1. At the lowest value of Brinkman number,
Br = 0.5, little effect of viscous heat generation appears
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tar

1.0+

FiG. 4. The ratio R; of the viscous heat generation and the

sum of viscous heat generation and conduction at the hot,

moving surface as a function of the melt Stefan number A,

for fixed values of the Brinkman number Br and the Stefan
number B for the solid.

in the nearly linear temperature profile. In this case,
about 75% of the energy added to the melt is conducted
across the moving heated surface and 25%; is generated
by viscous forces. Of this total, about 80% is conducted
across the melt interface and 20% is convected away
by the melt film, as found from the shielding ratios
R, and R,. As the Brinkman number is increased to
Br = 2 and still further to 5, the viscous heat generation
portions of the energy input to the melt increase to
55%, and to 959, respectively. This increasing influence
of the frictional heating also is evident from the in-
creasingly convex form of the temperature profiles in
Fig. 2 and from the increasing magnitude of the
quadratic coefficient g, in the temperature profile (see
Table 1).

Table 1. The effect of viscous dissipation
on the temperature profile,
T=1—g-ain—n*)—as(n—n’)
{Stefan numbers 4 = 1.0, B = 2.0

Brinkman
number,
Br az as
0.5 -0.10 +0.067
20 —0.59 +0.21
50 —144 +0.49

The melting rate of polymer along the heated wall
is conveniently expressed by the equation

=L

'’

m=—_

m
e Vwho =0

2(1—ay~2a34 { L\

2{ h31,(1+B)Pe \Lo @0
where the length Lo normal to the screw flight is the
characteristic length used to scale hp and Pe. The melt
rate m” is equal to the total melt flux at x = L less

the melt carried across the screw flight at x=0.
Equation (20) again accounts for viscous heat gener-

HMT Vol. 20, No. 6 G

679

ation, convection and variable-property effects on the
melting rate. This equation is plotted in Fig. 3 for a
range of Stefan numbers equal to A = 0.25-2 for the
melt and B =1 and 2 for the solid. Results for two
Brinkman numbers (Br = 0.5 and 2) for the melt are
shown and it should be noted that at constant
Brinkman number the velocity of the heated wall
Vw = (Tw— Ti)"*. The range of nondimensional par-
ameters and the length L/Lo of the solid bed in Fig. 3
are typical of extruder operating conditions as shown,
for example, in Figs. 5 and 6.

10K
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Vi = 110 X 107 ¥ m/s
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FiG. 5. Thewidth of thesolid bed L/L, in the melting section

of an extruder as a function of the displacement Z along the

screw flight. Br = 4.3, A =10, B = 2.2. Experimental data

and properties for low-density polyethylene from [6].

Constant-property, pure conduction solution, [7] -
equation (22) ————.
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fe23

Tow 25°C
Tw— Tu= 65°C

V= 46x10%m/ss
04l Mr=51%10" kg/ss .

0% 5% o4 06 08 10 iz
Z(m}
F1G. 6. Thewidth of thesolid bed L/Lqin the melting section
of an extruder as a function of the displacement z along the
screw flight. Br = 0.5, A = 1.5, B = 2.2. Experimental data
and properties for low-density polyethylene from [6].
Constant-property, pure conduction solution, [7] —;
equation (22) ———.

The mett rate dependence on the temperature differ-
ence across the melt film is clearly shown in the
figure, with larger thermal gradients across the melt
film resulting in a correspondingly increasing melt rate
for A < 1.5. For Stefan numbers greater than this value
the variable viscosity effects in the film predominate
and the melt rate m" reaches a maximum and decreases
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as the temperature difference across the film is increased
still further. The actual melt rate st is proportional to
Vi and increases very slowly or even decreases when
A > 1.5. The Stefan number B for the solid also in-
fluences the melting rate; when the subcooling (T, — Tp)
of the solid increases, the melting rate m” adjusts down-
ward as shown in the figure owing to the increased
conduction through the solid phase.

The importance of the temperature dependence of
the viscosity to the melt flow behavior can be seen
from the integrals I, and I, listed in Table 2. As seen

the heat generation is important over the lowest
segment of the melt Stefan number regime; for example,
at A = 0.5, the heat generation is 37%, of the heat
conducted into the melt at y =0 while at 4 =15
and 2 respectively the heat generation in the melt is
only 129 and 8% of the conduction term at the
moving surface.

When the Brinkman number is increased to a large
value such as Br =15, the viscous heat generation
becomes an important and often the predominat con-
sideration. At large Stefan numbers such as A = 2, the

Table 2. Temperature-dependence effects on flow in the meit film

Stefan number Brinkman number
A B Br

I, (Equation 9) I, (Equation 11)

1.0* 0.5

0.25 1.0 5.0

(Constant-property
solution, b = 0)

1.23 0.467
1.51 0438
230 0.378
5.81 0.272
1.28 0.468
1.60 0.438
2.49 0.380
6.31 0.278
1.0 0.5

*Changes in B only slightly influence I, and have no influence on I,.

from a comparison with the constant-property refer-
ence values, the temperature difference across the melt
film has an important effect of the momentum equa-
tion (2). The integral I,, which is a direct measure of
the viscosity—temperature dependence and which is
equal to unity in the constant-property case, increases
by a factor of approximately six as the Stefan number
of the melt increases from 0.25 to 2. The integral I,
which is equal to one-half in the constant-property
case, decreases from 0.47t00.28 over the Stefan number
range just mentioned. It is also important to note that
the integral I, is virtually independent of both the
Brinkman number and the subcooling of the solid bed
(denoted by the Stefan number B) and that I is
independent of B and only weakly dependent on the
Brinkman number over an order of magnitude change
in the latter. The influence of heat generation on the
melting rate is primarily due to the coefficients a, and
as (which are both dependent on I;) in the temperature
gradient at the interface and to the relation

Vi = [BrEF(TW_ TM)/IIM:]UZ

between the velocity (Peclet number) and the tempera-
ture difference across the melt film at constant
Brinkman number.

The parameter R, of equation (19a), which is the
ratio of the viscous heat generation term and the sum
of heat generation and conduction at the heated wall,
is plotted in Fig. 4. From these results it is possible
to assess the importance of viscous heating of the
melt over typical ranges of the Stefan and Brinkman
numbers for both phases. At small Brinkman numbers

heat generation term is 1.2 times the heat conducted
into the melt at the moving heated wall. The effect of
the heat generation becomes progressively greater
until, at 4 = 0.95, the heat conduction at the heated
wall falls to zero. Further evidence of this can be
seen in Fig. 2 where the temperature gradient at y = 0
and for Br = 5 appears to be nearly zero. When the
Stefan number is decreased still further at Br = 5, the
direction of the heat conduction at the wall is changed.
For A = 0.75, the viscous heat generation is predomi-
nant and is eleven times the heat conducted away
from the melt at the moving surface. As with the
integral functions I; and I, listed in Table 2, the
results in Fig. 4 show that the ratio R, is strongly
dependent on changes in the Brinkman number and
the Stefan number (temperature difference) for the melt
film, but is insensitive to changes in the subcooling of
the solid phase for typical values of the Stefan number
B. The results just described agree with the assertion
by Lindt [13] that viscous heat generation may often
be the predominant factor in the melting of polymers
during extrusion.

4. APPLICATION OF THE MELTING MODEL

The energy-balance integral is applicable in practice
for determining a variety of system parameters, in-
cluding the solid bed profile in the melting section of
an extruder. As an example, the computation of the
solid bed profile in an extruder of constant channel
cross-section is now considered. This simple geometry
is sufficient to demonstrate the applicability of the
melting model and its extension to more complicated
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systems, which include a variable channel cross-section
or a heated screw, is straightforward. These systems
have been studied to varying degrees of complexity by
Shapiro and Pearson [1], Lindt [13] and Donovan
[14], among others.

The present modelis derived from that of Vermeulen,
Scargo and Beek [7]. In the latter case no account
was taken of viscous heat generation, temperature-
dependent viscosity and convection, and all are in-
cluded here. It is assumed that changes in the F direc-
tion take place slowly and that the melting model
described in the previous sections is valid locally at
varying displacements along the screw channel. This is
a common assumption in all extruder modeling studies.
In addition, assuming a constant mass throughput rate
m, in the direction 7 along the screw channel, the
differential equation for the solid bed length L is

L
- )d<?o>
PrVwhoLol,

dz
1 2(1 —az—-2a3)As L ) 12
LI I Sl =W\ @
21, [I+ Pelzh%;(l“FB) (L«o ( )

Here ¢ is the density ratio for the granular polymer
relative to bulk solid * For the experiments described
by Vermeulen ¢f al, ¢ =0.65. In this equation the
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Two examples utilizing equation (22} are now con-
sidered. The experimental data were obtained by
Vermeulen et al. [7] in an experimental study of the
melting of low-density polyethylene, and the relevant
extruder parameters and physical properties are tabu-
lated in [6, 7). In the first example shown in Fig. 5 the
rotational speed and barrel temperature combine to
result in a large Brinkman number and moderate
Stefan number for the melt, c.f. Table 3{(a). The screw
was cooled during the experiments reported by
Vermeulen et al. and this precluded any melting at the
base of the screw. Thus the large Stefan number,
B =22, is a result of this cooling, ie. large (T~ To).
As a result of the large Brinkman number, Br = 4.3,
about 87, of the energy addition to the melt is
estimated to be a result of viscous heat generation
and 13% to be from conduction at the barrel surface.
Of this total energy added to the melt, about 80%; is
conducted across the melt interface and 20% is con-
vected away by the melt flow. The integrals I, and I,
corresponding to the conditions of Fig. 5 also suggest
a significant departure from the constant-property
case, as can also be seen from a comparison of the
coefficients X and Y for the two cases in Table 3(a).
The modified solid bed profile, equation {22}, vields
somewhat better agreement with the experimental data
in Fig 5 than does the constant-property, pure-con-

Table 3. A comparison of the coefficients X and Y in the solid bed profile, equation (22)

{a) Br=43 A=10 B=122 I =28 I =038 (Fig. 5)
Constant properties,
pure conduction in film [7] Equation (22)
X 119 2917
Y x 10? 4.26 8.51
(o) Br=05 A=15 B=22 Iy =37 1;=032 (Fig. 6)
X 4.38 780
Y x 107 8.31 9.55

Peclet number Pe = Viy Lo/ir, z = /Lo and hp = ho/L.
When ‘equation (21) is integrated with the initial con-
dition L == Lo at z = 0, the solution &

172
(X+1)172 (X £, 1)
Lo

1
1!,'2_“__»
(X+1) 57

2
T Ty =Yz (22)
L) T
where

2(1 —a, - 2ay)4e
= e D 22b
Pel, h3(1+ B) (220)
Y= %<PF VWEOLOIZ>X. (220

m,

*The melting rate m of the solid polymer in equation {4}
is multiplied by the factor ¢ in the case of the granular
polymer. The film thickness k is then altered as shown in
equation {21}.

duction profile. The tendency of the constant-property
solution to overestimate the melting rate at large values
of (Tiw — T), and to correspondingly underestimate the
solid bed profile, is offset in this case by the viscous
heat generation term which is included in the present
analysis but excluded from the constant-property,
pure-conduction model.

The second example plotted in Fig. 6 and listed in
Table 3(b) differs from the previous one in that the
Brinkman number, Br = 0.5, is relatively small. Con-
sequently the viscous heat generation contribution
makes up only 15% of the energy added to the melt
while 85% of the total energy input is conducted
across the hot barrel surface. The temperature-
dependence of the viscosity is more pronounced at
this higher Stefan number 4 = 1.5, and the integral
functions I; and I, again deviate substantially from
the corresponding constant-property values owing to
the relatively large temperature difference (T — Ty =
65°C) across the melt film. The importance of taking
the temperature-dependence of the viscosity into
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account is illustrated once again by the much improved
agreement between equation (22) and the experimental
data in Fig. 6 as compared to the constant-property
solution. The viscosity of the melt increases from 500
to 4700 Ns/m? across the melt film under the condi-
tions plotted in Fig. 6, and the melt rate is considerably
overestimated when the temperature-dependence of
the melt viscosity is neglected.

5. SUMMARY AND CONCLUDING REMARKS

An energy-balance integral method for analyzing the
contact melting of solids at a hot moving surface has
been described. The method is suitable in practice for
inclusion in any of several formulations for modeling
the polymer melting processes in a screw extruder.
Temperature-dependent viscosity, sensible heat and
viscous heat generation terms are of general importance
to this problem and can be included in the integral
formulation in a relatively simple and straightforward
manner. Several integral functions have been deter-
mined which allow one to estimate the relative con-
tributions of the several heat-transfer mechanisms to
the melting processes. The melting process is strongly
dependent on the Brinkman number which character-
izes the viscous heat generation and on the Stefan
number for the melt which characterizes the ratio of
sensible and latent heats for the film. At the large
Stefan numbers which are typical of extrusion pro-
cesses, the temperature-dependence of the viscosity has
a limiting effect on the maximum melting rate which
can be achieved. The large Brinkman numbers which
are typical of polymer extrusion suggest that viscous
heat generation often has a predominant effect on the
melting process.

The integral melting model has been incorporated
in a typical but relatively simple model for predicting
the solid bed profile in an extruder of constant cross-
section. This simple geometry is sufficient to demon-
strate the applicability and the salient features of the
integral model. Good agreement with experiment has
been obtained in two example cases. The first con-
cerns a system in which both viscous heat generation
and temperature-dependent viscosity are important,

OWEN M. GRIFFIN

and the second is one in which the large temperature
difference across the melt film is the predominating
factor and the viscous heat generation contribution is
relatively small.
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MODELE INTEGRAL DE BILAN ENERGETIQUE APPLICABLE A LA FUSION
DE SOLIDES SUR UNE SURFACE CHAUDE EN MOUVEMENT, AVEC APPLICATION
AUX PROCESSUS DE TRANSPORT LORS DE L’EXTRUSION

Reésume—L’article décrit une méthode intégrale de bilan énergétique pour 'étude de la fusion de solides
au contact d’une surface chaude en mouvement. On a introduit, dans le modéle de fusion une viscosité
dépendant de la température des termes sources de production de chaleur et la dissipation visqueuse,
ce qui est en pratique approprié a lintroduction dans une des formulations proposées pour la
modélisation des processus de fusion des polyméres par extrusion. A titre d’exemple, deux cas sont
calculés et comparés aux données expérimentales relatives aux profils de lit solide dans un dispositif
d’extrusion. Dans le premier exemple la production de chaleur par dissipation visqueuse et les effets de
variation de la viscosité avec la température sont tous deux importants, tandis que dans le deuxiéme
exemple de grands écarts de température a travers le film en fusion sont déterminants et la production
par dissipation visqueuse est relativement peu importante. On obtient dans les deux cas un bon accord
entre le modéle de fusion et les expériences.



The melting of solids on a hot moving surface

EIN ENERGIE-BILANZ-INTEGRAL-MODELL FUR DAS SCHMELZEN
VON FESTKORPERN AUF EINER HEISSEN, BEWEGTEN OBERFLACHE UND
DIE ANWENDUNG AUF TRANSPORTVORGANGE IN EXTRUDERN

Zusammenfassung— Die Arbeit beschreibt eine Energiebilanz-Integral-Technik zur Beschreibung des
Kontaktschmelzens von Festkdrpern auf einer heiBen, bewegten Oberfldche. Das Schmelzmodell berlick-
sichtigt die Temperaturabhiingigkeit der Viskositdt und der spezifischen Wiarmekapazitit sowie die
Wirmeerzeugung infolge Reibung; das Modell eignet sich in der Praxis zum Einsetzen in jede der
vorgeschlagenen Formulierungen zur Beschreibung des Polymer-Schmelzvorganges in Extrudern. Es
werden 2 Beispiele durchgerechnet und mit experimentellen Daten fiir die Festkorperprofile in Extrudern
verglichen. Im ersten Fall spielen sowohl die Wirmeerzeugung infolge Reibung wie die Temperatur-
abhingigkeit der Viskositdt eine Rolle, wihrend im zweiten Fall grofic Temperaturdifferenzen im
Schmelzgebiet dominieren und die Wirmeerzeugung infolge Reibung relativ unbedeutend ist. In beiden
Fillen ergibt sich eine gute Ubereinstimmung zwischen dem Schmelzmodell und den Versuchsergebnissen.

WHTECPAJIbHASL MOJEJAb BAJTAHCA SHEPTUHU
D1 ONMUCAHNA [POLIECCA TIJJABJEHMA TBEPIABLIX
TEN HA TOPSIUEN JABMKVIIEMCS MOBEPXHOCTHU
B [MPUMEHEHUU K NPOLECCAM IIEPEHOCA TPU
OKCTPY3UN

Annoramns — Murerpansueiit MeTon Gananca SHEPrHH MCHONbB3YETCS IS HCCIENOBaHHs KOHTAKT-
HOTO MMABJCHHA TBEPABIX TEJl HA ropsMei ABWxyweiics nosepxuocTH. IpennoxeHHas Monens
MIABJICHHS YYUTHIBAET 3aBUCHMOCTH BA3KOCTH OT TEMOEPATYPhI, TEIUIOCOACPXAHME M TEHNOTY
BSIKOH DUCCHnauny; € yAoOHO MCHOAB30BATE HA NIPAKTHKE B moO0H U3 npevIoxeHHsx B pabote
(HOPMYJIMPOBOK VISt MOJSIIMPOBAHHSA IPOUECCOB TUIABNEHMS TIONIMMEDPOB B IKCTpYhepax. B xadecTse
MPEMEPA PACCYMTAHBE IBA CHYYAs ¥ JAHO CPABHCHUE C KCIEPHMEHTAILHEIMHE JaAHHBIMHE T8 npoduns
TBEPHOTrO CHOS B 3KCTpyAepe. B nepsoM cnyyae NOMMEHMDYIOIIAMY SBIAIOTCH TENNOTA BA3KOM
MUCCHNALIMY H 33BHCHMOCTE BA3KOCTH OT TEMNEPATYPHI, B TO BPEMSi KaK BO BTOPOM — 3HAYHTEIbHAN
PA3HOCTL TEMIEPATyp IOMNePeK PAcIUIaBa IIPH HECYLUECTBEHHOM BIMSHHM BS3KOH auccunaumu. B
06oux crayyasx MOJNYy4EHO XOpOWee COOTBETCTBHE TEOPETHYECKHX DE3YNbTATOB C NAaHHLIMH IKC-
[IEPHMEHTOB.
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